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Abstract— We learn a visuomotor policy from a motion plan-
ner where the input of the policy and planner are from different
domains. The domain of the planner is a low-dimensional
representation of the environment that consists of object poses
and shapes whereas the policy observes a high-dimensional
visual representation of the environment as input. The goal is to
learn a visuomotor policy that imitates the behavior generated
by a motion planner. In the training phase, the robot has access
to the low-dimensional environment representation, while at
inference time only the visual representation is observed. We
first train a behavioral cloning policy in the low-dimensional
environment representation and an autoencoder in the visual
domain. Then, we combine both models into a single policy
and fine-tune it on a low amount of demonstration data. In
simulated experiments, we demonstrate the effectiveness of our
approach and compare it to prior work.

I. INTRODUCTION

There has been a lot of interest in learning robot control
policies directly from raw sensory image inputs [1]–[4]. One
approach is to train the perception system jointly with the
control policy in an end-to-end fashion. Another common
approach has been to use representation learning techniques
like autoencoders [2], [3] in an unsupervised fashion to learn
latent representations of high-dimensional sensory inputs and
use them in control policies. Training deep neural networks
is at the core of these methods, which has various limitations.
For instance, they require large amounts of training data and
collecting such data is impractical in real world environ-
ments. Simulators can be an effective tool to gather large
amounts of data, and typically also provide additional infor-
mation about the robot and environment. For example, a low-
dimensional state representation that consists of the shapes
and positions of objects in an environment. When such a
low-dimensional environment state is available, sampling-
based motion planning algorithms or trajectory optimization
techniques are able to generate smooth collision-free paths
towards a goal state. Motion planning and trajectory opti-
mization, however, rely on a known environment model and
also do not work with high-dimensional raw sensory inputs
like images.

In this work, we explore the question: Can we use a
motion planner as an expert to guide visuomotor policy
learning? The planner works in a domain where it has access
to a low-dimensional environment representation specifying
object poses and shapes. We use such a motion planner to
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generate a large amount of data for a given task. Then,
we apply behavioral cloning on this planner data to learn
a policy that can infer robotic actions from low-dimensional
environment states. Our goal is to transfer this policy to a
visuomotor policy that only takes a high-dimensional image
as input. To aid learning such a policy, we first learn an image
autoencoder to learn a latent environment representation that
captures the key information of an environment. Therefore,
we assume to have a separate dataset of environment images.
For this dataset, we do not assume to have access to the low-
dimensional environment state that corresponds to an image
observation, which is usually much harder and impractical
to obtain. For the third and final step, we assume to have
few demonstrations of actions as ground truth along with
image observations of the environment. This type of data
is typically hard to acquire and our goal is to work with
much less demonstration data compared to planner data
or data for training the image autoencoder. We use the
demonstration data to train an end-to-end policy in visual
domain by combining the image encoder with the low-
dimensional policy into a visuomotor policy (see Figure 1).
Since the encoder typically learns a higher dimensional latent
representation than the low-dimensional environment state,
we will learn a mapping from the latent representation to
environment state as part of this step.

We show preliminary results of two experiments in simula-
tion. In the first one, a point robot has to reach various goals
in a planar environment. The second experiment consists of
a robot arm with three joints that has to reach a goal config-
uration from various initial configurations. The experiments
show that our approach is able to learn effective policies
from a low amount of demonstrations.

II. METHOD

We consider the problem of policy search where the goal is
to learn a policy ut = π(st) which outputs the actions ut for
an agent based on the state st. The environment is a Markov
decision process whose state evolves according to unknown
non-linear dynamics. We assume that the robot state xt,
such as joint positions and velocities, is always available
as input to the policy. For the environment, we consider
two kinds of state representations: 1) a high-dimensional raw
sensory state It like an image from a camera mounted on
the agent; 2) a more structured low-dimensional state yt, for
example a specification of the pose and shape of the goal
and obstacles. Table I summarizes the terminology we use
throughout this paper. The goal of our approach is to learn
an end-to-end policy that maps high-dimensional images to
actions. We construct this policy from an autoencoder and a
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Fig. 1. Planner Guided Visual Learning. Top left shows behavior cloning from motion planner. Top right shows the image autoencoder. Bottom diagram
shows how we combine them both to train visuomotor policy. Matching colors represent reusing neural network weights from one stage to another.

policy learned via behavioral cloning from a motion planner.
A visual depiction of the method is shown in Figure 1. In
the following sections, we explain the models and training
scheme of our approach.

A. Datasets and Objectives

We assume to have access to a motion planner that can
generate an action trajectory u0:T for a given initial robot
state x0, initial environment state y0, and final environment
state yT . We sample various inputs to the planner and execute
the planned path in a simulator. The resulting state, action,
and environment trajectories are stored in the planner dataset

Dplan = {(xk, uk, yk)}k=1...M

This data is used to train a policy using behavioral cloning
by treating the motion planner as an expert. We call this
motion planner guided policy. More details can be found in
Section II-B.

In the visual domain, we assume to have a few demon-
strations available where we know the corresponding action
ut for an image It. This can be obtained by running the
robot in the real world, taking a record of image observations
I0:T , actions u0:T , and the reached robot states x0:T . These
trajectories are stored in the demonstration dataset

Ddemo = {(xk, uk, Ik)}k=1...N

Note that the amount of datapoints is assumed to be lower
than in the planner dataset. We use the demonstration dataset
to train the final policy that outputs an action for a given
image. The details of this training are outlined in Section
II-D.

In addition to the demonstration data in visual domain and
the planner data in simulation, we assume to have access to a
large amount of image observations. Here we do not assume
that a specific goal or action is associated with the image
observation. Our assumption is that such unlabeled data is
much easier to generate. We use this data to learn a latent

TABLE I
SUMMARY OF NOTATION USED IN THIS ARTICLE.

Symbol Description
xt Robot state (position, velocity)

yt
Low-dimensional environment state includ-
ing obstacle poses/shapes

It Image observation of environment
ut Robot action

zt

Intermediate latent representation of high-
dimensional image. This is typically lower
dimensional than It, but higher dimensional
than yt.

zt = genc
φ (It) Image encoder parameterized by φ

It = gdec
ρ (zt) Image decoder parameterized by ρ

ut = π
mp
θ (xt, yt) Behavioral cloning policy parametrized by θ

ut = π
img
ψ (xt, It) Visuomotor policy parameterized by ψ

yt = f latent
η (zt) Latent mapping parametrized by η

state representation of the high-dimensional image using an
autoencoder. We call this autoencoder dataset

Dauto = {Ik}k=1...L L� N

Details of training the autoencoder are outlined in Section
II-C.

Our objective is to learn a policy that maps a high-
dimensional image to an action, i.e., to learn a function
ut = πimg

ψ (xt, It). The complete algorithm is outlined in
Algorithm 1. We use the planner data to learn a policy
ut = πmp

θ (xt, yt) via behavioral cloning. An autoencoder
zt = genc

φ (It) is trained on Dauto such that the reconstruction
loss is minimized. Finally, we combine two models into
the policy πimg

ψ and add a mapping from latent state zt to
environment state yt i.e., yt = f latent

η (zt) that we fine-tune
on the demonstration dataset. The output of our algorithm
is an end-to-end policy that works with raw sensory image
observations ut = πimg

ψ (xt, It). In the following sections, we
elaborate on the details of each of these steps.
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Fig. 2. Experiment Variations for combining and training genc
φ , f latent

η , πmp
θ to produce a πimg

ψ . Broken arrow represents pre-trained frozen weights. Double
arrow represents pre-trained and finetuned parameters. Rows represent variations in training procedure. In left column, the latent learning predicts yt from
zt. In right column, we predict (xt, yt) i.e., robot state is also predicted as part of environment state.

B. Motion planner Policy

Using the planner dataset Dplan, we learn a policy that
maps a low-dimensional environment state to an action i,e.,
ut = πmp

θ (xt, yt). Our key insight here is that we can obtain
ground truth data for learning such a policy by running
existing sampling-based motion planning algorithms and
collecting data for robot state, action, and environment state.
The loss function guiding this learning is given by:

Lmp(θ) =
∑

(xt,yt,ut)∈Dplan

||πmp
θ (xt, yt)− ut||2 . (1)

C. Autoencoder

In order to learn a meaningful latent representation that
reduces the dimensionality of the image, we train an au-
toencoder zt = genc

φ (It) . In this step, we only use a
reconstruction loss as the cue for representational learning

Lauto(ρ, φ) =
∑

It∈Dauto

||gdec
ρ (genc

φ (It))− It||2 . (2)

In subsequent steps, when we train the image policy network
end-to-end, we are fine-tuning the learned latent representa-

Algorithm 1: Planner Guided Visual Learning
Function(PGVL)
Result: Visual policy πimg

ψ

Input: Dplan, Ddemo, Dauto
Begin

Train πmp
θ with Dplan on Lmp(θ) (Equation 1)

Train autoencoder models genc
φ and gdec

ρ with Dauto

on Lauto(ρ, φ) (Equation 2)
Initialize πimg

ψ with genc
φ and πmp

θ (Equation 3)
Fine-tune πimg

ψ with Ddemo on Limg (Equation 4)
End

tion in a direction more suitable for solving the visuomotor
task.

D. Learning Latent Mapping

We combine the learned encoder genc
φ and policy πmp

θ into
a visual policy

πimg
ψ (xt, It) = πmp

θ (xt, f
latent
η (genc

φ (It))) (3)

where the two models are connected with a latent mapping
yt = f latent

η (zt). This gives us an end-to-end policy to work
with images. We typically freeze the weights of the pre-
trained encoder φ and low-dimensional policy θ. Using the
demonstration data, we train the sub-neural network that
maps from the latent representation zt to the input of low-
dimensional policy yt on the loss function

Limg(ψ) =
∑

(xt,ut,It)∈Ddemo

||πimg
ψ (xt, It)− ut||2 . (4)

III. EXPERIMENTS

We evaluate our method on two different tasks: The first
task is a point robot in a planar 2D grid environment in
which the robot and goal are initialized at random locations
within the grid and the robot has a discrete action space. The
second experiment is the MuJoCO reacher, which is a robot
arm with three degrees of freedom. There, the robot has a
continuous action space and has to move from random initial
configurations to a desired goal configuration.

Variations: We considered a few different variations for
combining the two networks and training procedures, which
are outlined in Figure 2. For the training procedure, we
considered the variations:

• Latent/y: Training the latent mapping from zt to yt.
• E2E/y: Training end-to-end by not freezing the encoder

and motion planner policy network parameters.



• Finetune/y: Training the latent mapping by freezing
other parameters and then fine-tuning the network end-
to-end by unfreezing all parameters.

In all the above settings, the latent state maps only to the
environment state yt. In another option we considered, the
latent mapping predicts (xt, yt) instead of yt, which we
denote as Latent/xy, E2E/xy, and Finetune/xy.

For comparison, we considered two baselines:
• Behavioral Cloning from Images: Training the visual

policy directly from images in a supervised fashion. We
use this as baseline in the MuJoCo Reacher experiment.

• Environment Decoder with Motion Planner Policy:
Here, we assume to have a labeled dataset of environ-
ment state yt and the image observation It. We train
the image decoder directly to predict yt from It. The
prediction from this network is used as input to the low-
dimensional policy to predict ut. This baseline is used
in the grid experiment.

We used different criteria to compare the different meth-
ods. In the evaluation, we applied the learned policy to the
environment. We considered rollouts that exactly match the
length of the ground truth trajectory and also rollouts with
a fixed horizon (a sufficiently large number is chosen to
be higher than all ground truth trajectories). While the first
choice tells us how well the policy mimics the expert, the
second choice signifies whether the agent stays at the goal
if it was reached. We evaluate the following critera: goal
deviation at the end of trajectory (how far is the reached goal
from expected goal), trajectory error (the distance between
robot and environment states of the ground truth trajectory
and the rollout trajectory), and policy error (the distance
between actions chosen by our agent and the ground truth
actions). Note that when the rollout is longer than the ground
truth, the latter two criteria consider only the first portion
of it that matches in length to the ground truth. We also
report the success rate of the rollouts that ended near the
goal state (determined using a specific threshold value for
goal deviation based on experimental setting).

A. Point Robot in Planar Grid

For the point robot experiment, the image observation is
a 32× 32 grayscale image depicting a birds-eye view where
the robot is a square centered at the robot position and the
goal is another square centered at the desired location on
the grid. The robot state xt and environment state yt are
two-dimensional positions on the grid. The positions are
determined based on dividing the grid into 32 × 32 cells.
The robot’s actions is also two-dimensional, which allow the
robot to step along eight directions to neighboring grid. Note
that this is a discrete action space. To generate ground truth
planner data, we randomly sampled various environment and
robot states and used a greedy planner, which produces a plan
that moves the robot to the goal. A sample environment and
a trajectory is shown in Figure 3. A trajectory is generated by
first moving the robot to align diagonally to the goal and then
moving along the appropriate diagonal direction to reach the
goal.

Fig. 3. Grid Environment and Sample Trajectory

In this experiment, we assume that both the image It and
corresponding environment state yt are available. So, both
the plan and demo dataset are of the form:

Dplan/demo = {(xk, uk, yk, Ik)}i=1...N

We generated 10000 trajectories for the training dataset and
the total number of samples is N = 130000. We generated
a separate test dataset with 500 trajectories containing N ′ =
6500 samples.

In the baseline method, we train an image encoder to learn
a mapping from It directly to yt given by:

Ldemo(τ) =
∑

(It,yt)∈Ddemo

||gdec
τ (It)− yt||2

The end-to-end policy for the baseline is then formed as

πimg
ψ (xt, It) = πmp

θ (xt, g
dec
τ (It)) .

Table II shows the results we have observed (the experimen-
tal variations which are not shown did not produce decent
results).

B. MuJoCo Reacher

In this experiment, we used a robot arm with three
rotational joints that is simulated in MuJoCo. The robot starts
at a random initial configuration and the goal of the task is
to reach a goal configuration. Thus both xt and yt are three-
dimensional. The action ut represents a small desired change
in the joint configuration at a time step and is also three-
dimensional. For this experimental setup, the action space is
continuous with joint limits of 0.15 radians for all the joints.
A sample trajectory is shown in Figure 4.

We created different datasets for this experiment: a dataset
with uniformly random sampled start and goal configura-
tions; a fixed start position across the dataset; a fixed goal
position across the dataset; Different image observation sizes
among (256, 256), (128, 128) or (64, 64). We observed good
results for the the baseline method with fixed goal position
and an image size of (64, 64). The results are only shown
for this dataset.

For this dataset, both Dplan and Ddemo training sets contain
900 trajectories with 30000 samples. We used a separate
test set with 100 trajectories and 3000 samples. To train
the image autoencoder, we used a bigger dataset Dauto with
100000 images.

In this experiment, we used behavioral cloning on images
as the baseline. Table III presents the results we observed
from the baseline run and two variations of our method.



TABLE II
COMPARISON OF VARIOUS PERFORMANCE METRICS ACROSS GRID ENVIRONMENT RUNS.

Method/Metric
Policy

Accuracy
% (Avg)

Policy
Accuracy

% (Worst)

Trajectory
Loss (Avg)

Goal
Deviation

(Avg)

Goal
Deviation
(Worst)

Success
Rate (in
Reaching

goal)
Environment Decoder with

Motion Planner Policy (baseline) 99.38 60 4.0e-3 2.5e-2 1.0 96.0%

PGVL: Latent/y 88.64 0 2.5e-1 9.0e-1 24.5 60.8%
PGVL: Finetune/y 99.18 60 1.2e-2 1.6e-2 1.0 97.6%
PGVL: Latent/xy 95.84 0 7.7e-2 1.2e-1 1.5 79.2%

PGVL: Finetune/xy 99.06 0 1.3e-2 1.3e-2 1.0 98.6%

TABLE III
COMPARISON OF VARIOUS PERFORMANCE METRICS ACROSS REACHER RUNS.

Method/Metric Goal Loss (Avg) Goal Loss
(Highest)

Trajectory Loss
(Avg)

Policy Loss
(Avg)

Success Rate (in
Reaching goal)

Behavioral cloning from Images
(baseline) 3.0e-2 8.3e-2 6.1e-2 9.2e-3 100%

PGVL: E2E/y 5.1e-3 2.1e-2 5.5e-2 9.3e-3 100%
PGVL: E2E/xy 1.6e-2 3.1e-2 7.9e-2 1.2e-2 100%

Fig. 4. A sub sample of Reacher Environment Sample Trajectory. The
actual trajectory is 48 steps.

The image autoencoder is trained for 50 epochs. The
motion planner guided policy is trained for 100 epochs.
Afterwards, we fine-tuned the end-to-end network for 10
epochs and the resulting performance is similar to the
baseline method. We compare different runs in the box plot
in Figure 5 of goal deviations across the entire test set for
different experiments. We observed that our approach has a
better final goal deviation and reaches the goal closer across
different test trajectories.

IV. RELATED WORK

Controlling robots directly from raw sensory vision input
has been an active area of research. Model-free Reinforce-
ment Learning (RL) methods have been applied to this
problem [1], [5], [6] for various tasks such as dexterous
manipulation [7], [8], pick-and-place tasks [9], [10], etc.

Fig. 5. Reacher Goal Deviation Box Plot Comparison.

Another approach is behavioral cloning [4], [11] where
a policy is directly learned from expert demonstrations in
a supervised end-to-end fashion. It is one of the baseline
methods we used in our experiments. However these end-
to-end learning methods often require a large number of
samples and do not learn meaningful latent representations
towards solving the problem. We use behavioral cloning as
part of our method. However, we do not directly use it on
images, but instead use the trajectory data generated from a
motion planning algorithm as expert demonstrations to learn
a policy that works with low-dimensional environment states.

Several works also take the route of learning latent rep-
resentations towards solving the control problem. Embed
to control [2] is closely related to our work in learning
latent representations. A key difference is that they do
not learn a policy directly and instead use a trajectory
optimization algorithm in the latent space to infer optimal
actions. The approach in [3] follows a different route of
using self-supervised correspondence as the cue for learning
intermediate representations. Our work uses motion planning
algorithms to guide the policy learning towards learning
latent representations.

Motion planning [12]–[17] can plan collision-free paths



to a goal location in cluttered environments, using explicit
representations of the robot and environment. Prominent
techniques in sampling-based motion planning include prob-
abilistic roadmaps [12]–[14] and rapidly-exploring random
trees [15]–[17]. However, these methods typically work with
low-dimensional state representations and cannot by applied
directly to raw sensory input.

Combining motion planning algorithms with robot learn-
ing has been attempted in several works before. The standard
methodology along this route is to break the problem down
into parts that can and cannot be solved by the planner. Based
on the generated motion plan, RL is used to learn the part
that the planner cannot handle [18]–[24].

V. CONCLUSION

In this work, we have shown that effective end-to-end poli-
cies from raw sensory inputs can be learned by augmenting
the latent representation of an autoencoder with a policy that
imitates a motion planner. Our experiments show that such
policies match in quality with existing end-to-end learning
methods and achieve a high goal accuracy.

In the current work, we assume that the underlying distri-
bution governing the task where we apply motion planning
and the goal task is the same. Extending our work to apply
to tasks with different underlying data distributions is future
work that could have important implications for sim-to-real
transfer.
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